搜索

x

留言板

姓名
邮箱
手机号码
标题
留言内容
验证码

引用本文:
Citation:

尹华磊, 沈建宇, 陈诺, 陈增兵
cstr: 32037.14.aps.74.20250586

Research status and prospects of quantum secret sharing

YIN Hualei, SHEN Jianyu, CHEN Nuo, CHEN Zengbing
cstr: 32037.14.aps.74.20250586
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着量子通信和量子计算的快速发展, 人们对数据隐私保护和分布式量子信息处理的需求不断增高. 量子秘密共享作为经典秘密共享的量子延伸, 借助量子力学的基本原理可以在多方之间安全地共享信息, 提供了信息安全的新范式. 作为多方安全量子通信和分布式量子计算的重要基础, 量子秘密共享一经提出便受到广泛关注. 当前, 量子秘密共享研究已经包含经典和量子的场景, 在理论与实验上不断取得新的进展. 但在实际应用中仍然面临着量子信道噪声、设备不完美及量子资源受限等诸多困难和挑战, 实用性和安全性仍然难以兼顾. 本文将简要介绍不同技术路线下量子秘密共享的研究现状, 总结近年来量子秘密共享的发展趋势, 并对其未来的发展方向进行讨论和展望.
    Quantum secret sharing (QSS), as a quantum extension of classical secret sharing, uses the basic principles of quantum mechanics to share information safely among multiple parties, providing a new paradigm for information security. As a key foundation for secure multiparty quantum communication and distributed quantum computing, QSS has attracted considerable attention since its emergence. Currently, research in this field includes both classical and quantum scenarios, and continuous progress has been made in both theoretical and experimental aspects. This paper first reviews the current development of QSS for classical information. In this regard, significant and parallel progress has been made in both discrete-variable QSS and continuous-variable QSS. The QSS protocols for sharing classical information, from entangled states to single photons and then to coherent light, have been continuously optimized to better utilize available resources and achieve more efficient implementation under current technological conditions. Meanwhile, round-robin, measurement-device-independent, and other protocols have been steadily improving the security of QSS. Next, one will focus on QSS scheme for quantum secrets, which begins with the symmetry of access structures and introduces basic (k, n) threshold protocols, dynamic schemes that support adaptive agent groups, and symmetric quantum information splitting through entanglement. It further introduces hierarchical quantum secret sharing schemes for asymmetric splitting of quantum information. Considering practical laboratory conditions of quantum states as resources, an overall discussion is conducted on quantum secret sharing with graph states. Afterwards, the design of a continuous-variable scheme for quantum secret sharing is outlined, and entanglement state sharing and quantum teleportation between multiple senders and receivers are introduced. Finally, this review discusses and outlines the future development directions of QSS, thereby inspiring readers to further study and explore the relevant subjects.
      通信作者: 尹华磊, hlyin@ruc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274223)资助的课题.
      Corresponding author: YIN Hualei, hlyin@ruc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274223).
    [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

    [132]

    [133]

    [134]

    [135]

    [136]

    [137]

    [138]

    [139]

    [140]

    [141]

    [142]

    [143]

    [144]

    [145]

    [146]

    [147]

    [148]

    [149]

    [150]

    [151]

    [152]

    [153]

    [154]

    [155]

    [156]

    [157]

    [158]

    [159]

    [160]

    [161]

    [162]

    [163]

    [164]

    [165]

    [166]

    [167]

    [168]

  • Alice
    $ |+x\rangle $ $ |-x\rangle $ $ |+y\rangle $ $ |-y\rangle $
    Bob $ |+x\rangle $ $ |+x\rangle $ $ |-x\rangle $ $ |-y\rangle $ $ |+y\rangle $
    $ |-x\rangle $ $ |-x\rangle $ $ |+x\rangle $ $ |+y\rangle $ $ |-y\rangle $
    $ |+y\rangle $ $ |-y\rangle $ $ |+y\rangle $ $ |-x\rangle $ $ |+x\rangle $
    $ |-y\rangle $ $ |+y\rangle $ $ |-y\rangle $ $ |+x\rangle $ $ |-x\rangle $
    下载: 导出CSV

    QSS方案 特点
    使用纠缠态的QSS 由于纠缠特性, 即使光源部分被攻击者控制, 只要测量端能够被完美表征并进行测量错误率即可获得安全的秘密共享. 但目前实验上高效制备纠缠态仍具有较大困难
    使用单光子的QSS 相比于纠缠态, 单光子更容易制备和分发, 更具实验性和扩展性. 但仍与目前的通信光纤有适配性差异且容易受到特洛伊木马的攻击
    使用相干光的QSS 实验实现简单, 与标准光纤适配更容易实现远距离传输, 具有高稳定性和易操作性. 但相干光存在多光子成分, 无法抵御光子数分裂攻击
    离散变量的QSS 利用光子偏振态$ |H\rangle $和$ |V\rangle $或轨道角动量来编码密钥比特, 系统对损耗不敏感、测量和判别精度高. 但信道容量低、单光子制备困难
    连续变量的QSS 利用光场的正交分量$ \hat{x} $和$ \hat{p} $来编码密钥比特, 相比于离散变量可以确定性实现. 但大多数方案要求独立激光源及激光源之间的信号同步, 并且易受到本振攻击
    环回QSS 不用监测信号扰动, 密钥率能打破Pirandola-Laurenza-Ottaviani-Banchi界限. 但需要使用可变延迟马赫-曾德尔干涉仪限制了其实际应用
    测量设备无关的QSS 能够消除测量端设备不完美带来的攻击风险, 有效增强系统的安全性. 但大多数协议传输效率仍然会随着用户数量的增加呈指数级下降
    设备无关的QSS 能够消除所有实际不完美设备的安全漏洞. 但目前协议的性能仍然较低, 尚未有效实现
    下载: 导出CSV
    Baidu
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

    [16]

    [17]

    [18]

    [19]

    [20]

    [21]

    [22]

    [23]

    [24]

    [25]

    [26]

    [27]

    [28]

    [29]

    [30]

    [31]

    [32]

    [33]

    [34]

    [35]

    [36]

    [37]

    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47]

    [48]

    [49]

    [50]

    [51]

    [52]

    [53]

    [54]

    [55]

    [56]

    [57]

    [58]

    [59]

    [60]

    [61]

    [62]

    [63]

    [64]

    [65]

    [66]

    [67]

    [68]

    [69]

    [70]

    [71]

    [72]

    [73]

    [74]

    [75]

    [76]

    [77]

    [78]

    [79]

    [80]

    [81]

    [82]

    [83]

    [84]

    [85]

    [86]

    [87]

    [88]

    [89]

    [90]

    [91]

    [92]

    [93]

    [94]

    [95]

    [96]

    [97]

    [98]

    [99]

    [100]

    [101]

    [102]

    [103]

    [104]

    [105]

    [106]

    [107]

    [108]

    [109]

    [110]

    [111]

    [112]

    [113]

    [114]

    [115]

    [116]

    [117]

    [118]

    [119]

    [120]

    [121]

    [122]

    [123]

    [124]

    [125]

    [126]

    [127]

    [128]

    [129]

    [130]

    [131]

    [132]

    [133]

    [134]

    [135]

    [136]

    [137]

    [138]

    [139]

    [140]

    [141]

    [142]

    [143]

    [144]

    [145]

    [146]

    [147]

    [148]

    [149]

    [150]

    [151]

    [152]

    [153]

    [154]

    [155]

    [156]

    [157]

    [158]

    [159]

    [160]

    [161]

    [162]

    [163]

    [164]

    [165]

    [166]

    [167]

    [168]

  • [1] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统. 必威体育下载 , 2025, 74(12): 120301. doi: 10.7498/aps.74.20250322
    [2] 廖骎, 费焯迎, 王一军. 基于卡尔曼滤波的本地本振连续变量量子秘密共享. 必威体育下载 , 2025, 74(16): 160303. doi: 10.7498/aps.74.20250227
    [3] 陈云, 李璇冰, 李帅. 基于正交乘积态的多方量子秘密共享协议. 必威体育下载 , 2025, 74(17): 170301. doi: 10.7498/aps.74.20250394
    [4] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 必威体育下载 , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 必威体育下载 , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 必威体育下载 , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [7] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 必威体育下载 , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [8] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 必威体育下载 , 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [9] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 必威体育下载 , 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [10] 李熙涵. 量子直接通信. 必威体育下载 , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [11] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 必威体育下载 , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [12] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 必威体育下载 , 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [13] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案. 必威体育下载 , 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [14] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信. 必威体育下载 , 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 必威体育下载 , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [16] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源. 必威体育下载 , 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [17] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 必威体育下载 , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [18] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案. 必威体育下载 , 2008, 57(8): 4689-4694. doi: 10.7498/aps.57.4689
    [19] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 必威体育下载 , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [20] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 必威体育下载 , 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
计量
  • 文章访问数:  406
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-30
  • 修回日期:  2025-06-24
  • 上网日期:  2025-08-06
  • 刊出日期:  2025-08-20

返回文章
返回
Baidu
map