[1] |
Wang Yu, Wu Yi-Hao, Li Yi-Pu, Lu Kai-Xiang, Yi Tian-Cheng, Zhang Yun-Bo.Squeezing and evolution of single particle by frequency jumping in two-dimensional rotating harmonic. Acta Physica Sinica, 2024, 73(7): 074202.doi:10.7498/aps.73.20231929 |
[2] |
Xin Jun-Li, Shen Jun-Xia.Correspondences between quantum and classical orbits Berry phases and Hannay angles for harmonic oscillator system. Acta Physica Sinica, 2015, 64(24): 240302.doi:10.7498/aps.64.240302 |
[3] |
Ling Rui-Liang, Feng Jin-Fu, Hu Yun.Exact wave function of dual-coupled two-dimensional harmonic oscillators with time-dependent and anisotropic mass and frequency. Acta Physica Sinica, 2010, 59(2): 759-764.doi:10.7498/aps.59.759 |
[4] |
Ling Rui-Liang, Feng Jin-Fu.Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency. Acta Physica Sinica, 2009, 58(4): 2164-2167.doi:10.7498/aps.58.2164 |
[5] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin.Dynamical evolution for time-dependent qscillators. Acta Physica Sinica, 2008, 57(11): 6736-6740.doi:10.7498/aps.57.6736 |
[6] |
Li Ning, Ju Guo-Xing, Ren Zhong-Zhou.Bound states for a kind of relativistic non-harmonic oscillator systems. Acta Physica Sinica, 2005, 54(6): 2520-2523.doi:10.7498/aps.54.2520 |
[7] |
Zheng Yi, Yang Xin-E.Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica, 2005, 54(2): 511-516.doi:10.7498/aps.54.511 |
[8] |
Li Jiang-Fan, Huang Chun-Jia, Jiang Zong-Fu, Huang Zu-Hong.The evolution and two-mode squeezed states of the time-dependent two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(2): 522-529.doi:10.7498/aps.54.522 |
[9] |
Liu Cheng-Yi, Liu Jiang, Yin Jian-Ling, Deng Dong-Mei, Fan Guang-Han.. Acta Physica Sinica, 2002, 51(11): 2431-2434.doi:10.7498/aps.51.2431 |
[10] |
LING RUI-LIANG.PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME DEPENDENTLY DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1421-1424.doi:10.7498/aps.50.1421 |
[11] |
LI BO-ZANG, LI LING.RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(9): 1654-1660.doi:10.7498/aps.50.1654 |
[12] |
LI LING, LI BO-ZANG, LIANG JIU-QING.LEWIS-RIESENFELD PHASES AND BERRY PHASES IN THEQUANTUM SYSTEM OF TIME-DEPENDENT HARMONICOSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica, 2001, 50(11): 2077-2082.doi:10.7498/aps.50.2077 |
[13] |
Li Zhi-jian, Cheng Jian-gang, Liang Jiu-qing.Time Evolution and Berry Phases of a Time-Dependent Oscillator in Fin ite-Dimensional Hilbert Space. Acta Physica Sinica, 2000, 49(1): 11-16.doi:10.7498/aps.49.11 |
[14] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE.EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica, 1999, 48(9): 1601-1604.doi:10.7498/aps.48.1601 |
[15] |
LIU DENG-YUN.THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica, 1998, 47(8): 1233-1240.doi:10.7498/aps.47.1233 |
[16] |
YU ZHAO-XIAN, WANG JI-SUO, LIU YE-HOU.HIGHER POWER SQUEEZING AND ANTIBUNCHING EFFECTS FOR GENERALIZED ODD AND EVEN COHERENT STATES OF A NON HARMONIC OSCILLATOR. Acta Physica Sinica, 1997, 46(9): 1693-1698.doi:10.7498/aps.46.1693 |
[17] |
LAI YUN-ZHONG, LIANG JIU-QING.TIME EVOLUTION OF A QUANTUM SYSTEM WITH HAMILTONIAN CONSISTING OF TIME-DEPENDENT LINEAR COMBINATION OF SU(l, 1)AND SU(2) GENERATORS AND THE HERMITIAN INVARIANT OPERATOR. Acta Physica Sinica, 1996, 45(5): 738-746.doi:10.7498/aps.45.738 |
[18] |
Zuo Wei, Wang Shun-Jin.. Acta Physica Sinica, 1995, 44(9): 1353-1352.doi:10.7498/aps.44.1353 |
[19] |
Xu Jing-Bo, Liu Yi-Chang, Gao Cun-Xiao.. Acta Physica Sinica, 1995, 44(2): 216-224.doi:10.7498/aps.44.216 |
[20] |
GAO XIAO-CHUN, XU JIN-BO, QIAN TIE-ZHENG.THE EXACT SOLUTION AND BERRY'S PHASE FOR THE GENERALIZED TIME-DEPENDENT HARMONIC OSCILLATOR. Acta Physica Sinica, 1991, 40(1): 25-32.doi:10.7498/aps.40.25 |