[1] |
Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun.First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102.doi:10.7498/aps.72.20231313 |
[2] |
Yin Jia-Peng, Liu Sheng-Guang.A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica, 2022, 71(1): 012901.doi:10.7498/aps.71.20211374 |
[3] |
An Xin-Lei, Qiao Shuai, Zhang Li.Dynamic response and control of neuros based on electromagnetic field theory. Acta Physica Sinica, 2021, 70(5): 050501.doi:10.7498/aps.70.20201347 |
[4] |
Wang Yan-Hong, Wang Lei, Wu Jing-Zhi.Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica, 2021, 70(15): 158703.doi:10.7498/aps.70.20210421 |
[5] |
Zhu Hai-Long, Li Xue-Ying, Tong Hong-Hui.Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma. Acta Physica Sinica, 2021, 70(15): 155202.doi:10.7498/aps.70.20202135 |
[6] |
Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang.Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204.doi:10.7498/aps.68.20190583 |
[7] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li.Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica, 2014, 63(17): 170202.doi:10.7498/aps.63.170202 |
[8] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[9] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[10] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[12] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579.doi:10.7498/aps.56.5575 |
[13] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica, 2006, 55(11): 5594-5597.doi:10.7498/aps.55.5594 |
[14] |
Zhang Yi, Ge Wei-Kuan.A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, 2005, 54(4): 1464-1467.doi:10.7498/aps.54.1464 |
[15] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[16] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan.On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499.doi:10.7498/aps.54.496 |
[17] |
Li Hong, Fang Jian-Hui.Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(9): 2807-2810.doi:10.7498/aps.53.2807 |
[18] |
Zhang Qin, Ban Chun-Yan, Cui Jian-Zhong, Ba Qi-Xian, Lu Gui-Min, Zhang Bei-Jiang.The forced solution mechanism of alloying agents of 7075 alloy as-cast ingot und er the effects of electromagnetic field. Acta Physica Sinica, 2003, 52(10): 2642-2648.doi:10.7498/aps.52.2642 |
[19] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |
[20] |
WU QI-XUE.DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica, 2000, 49(11): 2118-2122.doi:10.7498/aps.49.2118 |