[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica, 2015, 64(6): 064502.doi:10.7498/aps.64.064502 |
[2] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[3] |
Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system. Acta Physica Sinica, 2013, 62(11): 110201.doi:10.7498/aps.62.110201 |
[4] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[5] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[6] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[7] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[8] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[9] |
Cai Jian-Le.Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27.doi:10.7498/aps.58.22 |
[10] |
Ge Wei-Kuan.Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717.doi:10.7498/aps.57.6714 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[12] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin.Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713.doi:10.7498/aps.57.6709 |
[13] |
Fang Jian-Hui, Ding Ning, Wang Peng.A new type of conserved quantity of Mei symmetry for Hamilton system. Acta Physica Sinica, 2007, 56(6): 3039-3042.doi:10.7498/aps.56.3039 |
[14] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[15] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579.doi:10.7498/aps.56.5575 |
[16] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong.Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica, 2005, 54(2): 500-503.doi:10.7498/aps.54.500 |
[17] |
Zhang Yi, Ge Wei-Kuan.A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, 2005, 54(4): 1464-1467.doi:10.7498/aps.54.1464 |
[18] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[19] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(5): 1270-1275.doi:10.7498/aps.53.1270 |
[20] |
Mei Feng-Xiang.Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica, 2003, 52(5): 1048-1050.doi:10.7498/aps.52.1048 |