[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica, 2015, 64(6): 064502.doi:10.7498/aps.64.064502 |
[2] |
Zhang Yi.Perturbation to Noether symmetries and adiabatic invariants for nonconservative dynamic systems. Acta Physica Sinica, 2013, 62(16): 164501.doi:10.7498/aps.62.164501 |
[3] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang.Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica, 2010, 59(12): 8322-8325.doi:10.7498/aps.59.8322 |
[4] |
Hu Chu-Le, Xie Jia-Fang.Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica, 2007, 56(9): 5045-5048.doi:10.7498/aps.56.5045 |
[5] |
Lou Zhi-Mei.Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica, 2005, 54(5): 1969-1971.doi:10.7498/aps.54.1969 |
[6] |
Ge Wei-Kuan.Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica, 2005, 54(6): 2478-2481.doi:10.7498/aps.54.2478 |
[7] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na.Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica, 2005, 54(2): 490-495.doi:10.7498/aps.54.490 |
[8] |
Zhang Yi.Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(2): 331-336.doi:10.7498/aps.53.331 |
[9] |
Luo Shao-Kai, Mei Feng-Xiang.A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(3): 6-10.doi:10.7498/aps.53.6 |
[10] |
Fang Jian-Hui, Liao Yong-Pan, Zhang Jun.Non-Noether conserved quantity of a general form for mechanical systems with variable mass. Acta Physica Sinica, 2004, 53(12): 4037-4040.doi:10.7498/aps.53.4037 |
[11] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(8): 2413-2418.doi:10.7498/aps.53.2413 |
[12] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica, 2004, 53(12): 4021-4025.doi:10.7498/aps.53.4021 |
[13] |
Ge Wei-Kuan, Zhang Yi.Form invariance for a constrained system with second-order reducible differentia l constraints. Acta Physica Sinica, 2003, 52(9): 2105-2108.doi:10.7498/aps.52.2105 |
[14] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[15] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng.Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, 2003, 52(7): 1561-1564.doi:10.7498/aps.52.1561 |
[16] |
Chen Pei-Sheng, Fang Jian-Hui.Form invariance of nonconservative nonholonomic systems in the phase space. Acta Physica Sinica, 2003, 52(5): 1044-1047.doi:10.7498/aps.52.1044 |
[17] |
Qiao Yong-Fen, Zhang Yao-Liang, Han Guang-Cai.Form invariance of Hamilton's canonical equations of a nonholonomic mechanical s ystem. Acta Physica Sinica, 2003, 52(5): 1051-1056.doi:10.7498/aps.52.1051 |
[18] |
Ge Wei-Kuan.. Acta Physica Sinica, 2002, 51(5): 939-942.doi:10.7498/aps.51.939 |
[19] |
Qiao Yong-Fen, Zhang Yao-Liang, Zhao Shu-Hong.. Acta Physica Sinica, 2002, 51(8): 1661-1665.doi:10.7498/aps.51.1661 |
[20] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing.. Acta Physica Sinica, 2002, 51(10): 2183-2185.doi:10.7498/aps.51.2183 |