[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica, 2015, 64(6): 064502.doi:10.7498/aps.64.064502 |
[2] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[4] |
Dong Wen-Shan, Fang Jian-Hui, Huang Bao-Xin.Hojman conserved quantities of generalized linear nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(2): 724-728.doi:10.7498/aps.59.724 |
[5] |
Gu Shu-Long, Zhang Hong-Bin.Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica, 2010, 59(2): 716-718.doi:10.7498/aps.59.716 |
[6] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin.Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713.doi:10.7498/aps.57.6709 |
[7] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin.Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica, 2008, 57(11): 6704-6708.doi:10.7498/aps.57.6704 |
[8] |
Zhang Yi.Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica, 2006, 55(2): 504-510.doi:10.7498/aps.55.504 |
[9] |
Qiao Yong-Fen, Zhao Shu-Hong.Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica, 2006, 55(2): 499-503.doi:10.7498/aps.55.499 |
[10] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica, 2005, 54(3): 1009-1014.doi:10.7498/aps.54.1009 |
[11] |
Ge Wei-Kuan.Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica, 2005, 54(6): 2478-2481.doi:10.7498/aps.54.2478 |
[12] |
Fang Jian-Hui, Zhang Peng-Yu.The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica, 2004, 53(12): 4041-4044.doi:10.7498/aps.53.4041 |
[13] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(5): 1270-1275.doi:10.7498/aps.53.1270 |
[14] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica, 2004, 53(12): 4021-4025.doi:10.7498/aps.53.4021 |
[15] |
Zhang Yi.Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(2): 331-336.doi:10.7498/aps.53.331 |
[16] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(8): 2413-2418.doi:10.7498/aps.53.2413 |
[17] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng.Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, 2003, 52(7): 1561-1564.doi:10.7498/aps.52.1561 |
[18] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[19] |
Qiao Yong-Fen, Zhang Yao-Liang, Han Guang-Cai.Form invariance of Hamilton's canonical equations of a nonholonomic mechanical s ystem. Acta Physica Sinica, 2003, 52(5): 1051-1056.doi:10.7498/aps.52.1051 |
[20] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing.. Acta Physica Sinica, 2002, 51(10): 2183-2185.doi:10.7498/aps.51.2183 |