[1] |
Chai Qin-Qin.A method of identifying parameters of a time-varying time-delay chaotic system. Acta Physica Sinica, 2015, 64(24): 240506.doi:10.7498/aps.64.240506 |
[2] |
Liu Le-Zhu, Zhang Ji-Qian, Xu Gui-Xia, Liang Li-Si, Wang Mao-Sheng.A chaotic secure communication method based on chaos systems partial series parameter estimation. Acta Physica Sinica, 2014, 63(1): 010501.doi:10.7498/aps.63.010501 |
[3] |
Li Rui, Zhang Guang-Jun, Yao Hong, Zhu Tao, Zhang Zhi-Hao.Generalized dislocated lag projective synchronization of fractional chaotic systems with fully uncertain parameters. Acta Physica Sinica, 2014, 63(23): 230501.doi:10.7498/aps.63.230501 |
[4] |
Zhu Da-Wei, Tu Li-Lan.Adaptive synchronization and parameter identification for Lorenz chaotic system with stochastic perturbations. Acta Physica Sinica, 2013, 62(5): 050508.doi:10.7498/aps.62.050508 |
[5] |
Cao He-Fei, Zhang Ruo-Xun.Parameter modulation digital communication and its circuit implementation using fractional-order chaotic system via a single driving variable. Acta Physica Sinica, 2012, 61(2): 020508.doi:10.7498/aps.61.020508 |
[6] |
Li Dong, Deng Liang-Ming, Du Yong-Xia, Yang Yuan-Yuan.Synchronization for fractional order hyperchaotic Chen system and fractional order hyperchaotic Rssler system with different structure. Acta Physica Sinica, 2012, 61(5): 050502.doi:10.7498/aps.61.050502 |
[7] |
Ma Tie-Dong, Jiang Wei-Bo, Fu Jie, Chai Yi, Chen Li-Ping, Xue Fang-Zheng.Adaptive synchronization of a class of fractional-order chaotic systems. Acta Physica Sinica, 2012, 61(16): 160506.doi:10.7498/aps.61.160506 |
[8] |
Li Nong, Li Jian-Fen, Liu Yu.Tracking control and parameters identification of a class of chaotic systems with unknown parameters. Acta Physica Sinica, 2011, 60(5): 050507.doi:10.7498/aps.60.050507 |
[9] |
Zhang Ruo-Xun, Cao He-Fei.Adaptive synchronization of fractional-order chaotic system via sliding mode control. Acta Physica Sinica, 2011, 60(5): 050510.doi:10.7498/aps.60.050510 |
[10] |
Ma Jun, Su Wen-Tao, Gao Jia-Zhen.Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model. Acta Physica Sinica, 2010, 59(3): 1554-1561.doi:10.7498/aps.59.1554 |
[11] |
Li Nong, Li Jian-Fen, Liu Yu-Ping.Anti-synchronization of uncertain chaotic system and parameters identification. Acta Physica Sinica, 2010, 59(9): 5954-5958.doi:10.7498/aps.59.5954 |
[12] |
Zhang Ruo-Xun, Yang Yang, Yang Shi-Ping.Adaptive synchronization of the fractional-order unified chaotic system. Acta Physica Sinica, 2009, 58(9): 6039-6044.doi:10.7498/aps.58.6039 |
[13] |
Wen Shu-Huan.A fast algorithm for adaptive predictive function of Hénon chaotic system. Acta Physica Sinica, 2009, 58(8): 5209-5213.doi:10.7498/aps.58.5209 |
[14] |
Wen Shu-Huan, Wang Zhe, Liu Fu-Cai.A fast algorithm for adaptive generalized predictive control of Hénon chaotic systems. Acta Physica Sinica, 2009, 58(6): 3753-3758.doi:10.7498/aps.58.3753 |
[15] |
Luo Qun, Wu Wei, Li Li-Xiang, Yang Yi-Xian, Peng Hai-Peng.Adaptive synchronization research on the uncertain complex networks with time-delay. Acta Physica Sinica, 2008, 57(3): 1529-1534.doi:10.7498/aps.57.1529 |
[16] |
Li Jian-Fen, Li Nong, Cai Li, Zhang Bin.Parameters identification and adaptive synchronization of uncertain Chua’s circuit. Acta Physica Sinica, 2008, 57(12): 7500-7505.doi:10.7498/aps.57.7500 |
[17] |
Li Nong, Li Jian-Fen, Liu Yu-Ping, Ma Jian.Parameter identification based on linear feedback control for uncertain chaotic system. Acta Physica Sinica, 2008, 57(3): 1404-1408.doi:10.7498/aps.57.1404 |
[18] |
Zhang Ruo-Xun, Tian Gang, Li Ping, Yang Shi-Ping.Adaptive synchronization of a class of chaotic systems with uncertain parameters. Acta Physica Sinica, 2008, 57(4): 2073-2080.doi:10.7498/aps.57.2073 |
[19] |
Cai Guo-Liang, Huang Juan-Juan.Synchronization for hyperchaotic Chen system and hyperchaotic R?ssler system with different structure. Acta Physica Sinica, 2006, 55(8): 3997-4004.doi:10.7498/aps.55.3997 |
[20] |
Guan Xin-Ping, Peng Hai-Peng, Li Li-Xiang, Wang Yi-Qun.. Acta Physica Sinica, 2001, 50(1): 26-29.doi:10.7498/aps.50.26 |