[1] |
Zheng Guang-Chao, Liu Chong-Xin, Wang Yan.Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors. Acta Physica Sinica, 2018, 67(5): 050502.doi:10.7498/aps.67.20172354 |
[2] |
Wang Cong, Zhang Hong-Li.Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm. Acta Physica Sinica, 2016, 65(6): 060503.doi:10.7498/aps.65.060503 |
[3] |
Wang Bin, Wu Chao, Zhu De-Lan.A new double-wing fractional-order chaotic system and its synchronization by sliding mode. Acta Physica Sinica, 2013, 62(23): 230506.doi:10.7498/aps.62.230506 |
[4] |
Liu Shu-Tang, Qiao Wei, Sun Jie.Parameter identification of generalized Julia sets. Acta Physica Sinica, 2011, 60(7): 070510.doi:10.7498/aps.60.070510 |
[5] |
Liu Fu-Cai, Li Jun-Yi, Zang Xiu-Feng.Anti-synchronization of different hyperchaotic systems based on adaptive active control and fractional sliding mode control. Acta Physica Sinica, 2011, 60(3): 030504.doi:10.7498/aps.60.030504 |
[6] |
Zhao Ling-Dong, Hu Jian-Bing, Bao Zhi-Hua, Zhang Guo-An, Xu Chen, Zhang Shi-Bing.A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Physica Sinica, 2011, 60(10): 100507.doi:10.7498/aps.60.100507 |
[7] |
Hu Jian-Bing, Zhang Guo-An, Zhao Ling-Dong, Zeng Jin-Quan.Intermittent synchronizing fractional unified chaotic systems. Acta Physica Sinica, 2011, 60(6): 060504.doi:10.7498/aps.60.060504 |
[8] |
Li Nong, Li Jian-Fen, Liu Yu-Ping.Anti-synchronization of uncertain chaotic system and parameters identification. Acta Physica Sinica, 2010, 59(9): 5954-5958.doi:10.7498/aps.59.5954 |
[9] |
Zhao Ling-Dong, Hu Jian-Bing, Liu Xu-Hui.Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters. Acta Physica Sinica, 2010, 59(4): 2305-2309.doi:10.7498/aps.59.2305 |
[10] |
Zhang Ruo-Xun, Yang Yang, Yang Shi-Ping.Adaptive synchronization of the fractional-order unified chaotic system. Acta Physica Sinica, 2009, 58(9): 6039-6044.doi:10.7498/aps.58.6039 |
[11] |
Hu Jian-Bing, Han Yan, Zhao Ling-Dong.A novel stablility theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach. Acta Physica Sinica, 2009, 58(4): 2235-2239.doi:10.7498/aps.58.2235 |
[12] |
Hu Jian-Bing, Han Yan, Zhao Ling-Dong.Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters. Acta Physica Sinica, 2009, 58(3): 1441-1445.doi:10.7498/aps.58.1441 |
[13] |
Li Nong, Li Jian-Fen, Liu Yu-Ping, Ma Jian.Parameter identification based on linear feedback control for uncertain chaotic system. Acta Physica Sinica, 2008, 57(3): 1404-1408.doi:10.7498/aps.57.1404 |
[14] |
Zhao Pin-Dong, Zhang Xiao-Dan.Study on a class of chaotic systems with fractional order. Acta Physica Sinica, 2008, 57(5): 2791-2798.doi:10.7498/aps.57.2791 |
[15] |
Zhang Ruo-Xun, Yang Shi-Ping.Designing synchronization schemes for a fractional-order hyperchaotic system. Acta Physica Sinica, 2008, 57(11): 6837-6843.doi:10.7498/aps.57.6837 |
[16] |
Chen Xiang-Rong, Liu Chong-Xin, Li Yong-Xun.Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Physica Sinica, 2008, 57(3): 1453-1457.doi:10.7498/aps.57.1453 |
[17] |
.Controlling projective synchronization in coupled fractional order chaotic Chen system. Acta Physica Sinica, 2007, 56(12): 6815-6819.doi:10.7498/aps.56.6815 |
[18] |
Peng Hai-Peng, Li Li-Xiang, Yang Yi-Xian, Zhang Xiao-Hong, Gao Yang.Parameter identification of first order time-delay chaotic system. Acta Physica Sinica, 2007, 56(11): 6245-6249.doi:10.7498/aps.56.6245 |
[19] |
Wang Xing-Yuan, Wu Xiang-Jun.Parameter identification and adaptive synchronization of uncertain Chen system. Acta Physica Sinica, 2006, 55(2): 605-609.doi:10.7498/aps.55.605 |
[20] |
Guan Xin-Ping, Peng Hai-Peng, Li Li-Xiang, Wang Yi-Qun.. Acta Physica Sinica, 2001, 50(1): 26-29.doi:10.7498/aps.50.26 |