[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li.Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica, 2014, 63(17): 170202.doi:10.7498/aps.63.170202 |
[2] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201.doi:10.7498/aps.62.160201 |
[3] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong.Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202.doi:10.7498/aps.61.200202 |
[4] |
Cai Jian-Le, Shi Sheng-Shui.Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201.doi:10.7498/aps.61.030201 |
[5] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[6] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li.A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica, 2011, 60(8): 084501.doi:10.7498/aps.60.084501 |
[7] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[8] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[9] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian.Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212.doi:10.7498/aps.59.5209 |
[10] |
Fang Jian-Hui.A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica, 2009, 58(6): 3617-3619.doi:10.7498/aps.58.3617 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[12] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[13] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579.doi:10.7498/aps.56.5575 |
[14] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica, 2006, 55(11): 5594-5597.doi:10.7498/aps.55.5594 |
[15] |
Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang.Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica, 2006, 55(7): 3237-3240.doi:10.7498/aps.55.3237 |
[16] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[17] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[18] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan.On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499.doi:10.7498/aps.54.496 |
[19] |
Li Hong, Fang Jian-Hui.Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(9): 2807-2810.doi:10.7498/aps.53.2807 |
[20] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |