[1] |
Gou Li-Dan.On noncommutative energy spectra in two-dimensional coupling harmonic oscillator. Acta Physica Sinica, 2021, 70(20): 200301.doi:10.7498/aps.70.20210092 |
[2] |
Wu Ze, Fan Hong-Yi.The invariant eigen-operator method in matrix form and the eigenfrequency of several mesoscopic circuits. Acta Physica Sinica, 2019, 68(22): 220301.doi:10.7498/aps.68.20190651 |
[3] |
Zhang Ke, Fan Cheng-Yu, Fan Hong-Yi.Invariant eigen-operator calculated vibration mode of lattice in the case of absorbing an atom onto crystal surface. Acta Physica Sinica, 2018, 67(17): 170301.doi:10.7498/aps.67.20180469 |
[4] |
Gao Jie, Zhang Min-Cang.Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential. Acta Physica Sinica, 2016, 65(2): 020301.doi:10.7498/aps.65.020301 |
[5] |
Aili Mieralimujiang, Mamat Mamatrishat, Ghupur Yasenjan.Thermodynamic properties of harmonic oscillator system in noncommutative phase space. Acta Physica Sinica, 2015, 64(14): 140201.doi:10.7498/aps.64.140201 |
[6] |
Ren Yi-Chong, Fan Hong-Yi.Solving dispersion relations of one-dimensional diatomic chain with on-site potential by invariant eigen-operator method. Acta Physica Sinica, 2013, 62(15): 156301.doi:10.7498/aps.62.156301 |
[7] |
Shao Dan, Shao Liang, Shao Chang-Gui, H.Noda.Eigenaction of metric operator on Gaussian weave state and spin-geometry. Acta Physica Sinica, 2007, 56(3): 1271-1291.doi:10.7498/aps.56.1271 |
[8] |
Shao Liang, Shao Dan, Shao Chang-Gui, Zhang Zu-Quan.Eigenactions and eigenvalues of volume operator on any-valent vertices. Acta Physica Sinica, 2006, 55(11): 5629-5637.doi:10.7498/aps.55.5629 |
[9] |
Long Shu-Ming, Ran Qi-Wu, Xiong Xiao-Jun.The space dent of sphere-symmetry harmonic oscillator in ground state. Acta Physica Sinica, 2005, 54(3): 1044-1047.doi:10.7498/aps.54.1044 |
[10] |
Li Wen-Bo, Li Ke-Xuan, Li Ye, Li Mi-Shan, Li Ya-Ling, Wen Xiao-Yang, Yuan Guang-Jun.Symmetry in spectrum space of isotonic oscillator and two-photon parametric model. Acta Physica Sinica, 2004, 53(12): 4202-4210.doi:10.7498/aps.53.4202 |
[11] |
Fu Mei-Huan, Ren Zhong-Zhou.Four kinds of raising and lowering operators of three-dimensional isotropic harmonic oscillators with spin-orbit coupling. Acta Physica Sinica, 2004, 53(5): 1280-1283.doi:10.7498/aps.53.1280 |
[12] |
Wang Ji-Suo, Feng Jian, Liu Tang-Kun, Zhan Ming-Sheng.. Acta Physica Sinica, 2002, 51(9): 1983-1988.doi:10.7498/aps.51.1983 |
[13] |
Xuan Xin-Wei.. Acta Physica Sinica, 2002, 51(4): 723-726.doi:10.7498/aps.51.723 |
[14] |
ZHANG YAN-PENG, GAN CHEN-LI, ZHU JING-PING, TANG TIAN-TONG, FU PAN-MING.ENERGY-LEVEL DIFFERENCE AND LASER ABSOLUTE FREQUENCY MEASUREMENT BY POLARIZATION BEATS SPECTROSCOPY WITH PHASE-CONJUGATION GEOMETRY. Acta Physica Sinica, 1999, 48(9): 1667-1675.doi:10.7498/aps.48.1667 |
[15] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE.EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica, 1999, 48(9): 1601-1604.doi:10.7498/aps.48.1601 |
[16] |
NI ZHI-XIANG.SUPERPOSITION OF GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1997, 46(9): 1687-1692.doi:10.7498/aps.46.1687 |
[17] |
LI GUANG-HUI.MATRIX ELEMENTS OF RAISING AND LOWERING OPERATORS OF AN ISOTROPIC HARMONIC OSCILLATOR. Acta Physica Sinica, 1997, 46(12): 2289-2293.doi:10.7498/aps.46.2289 |
[18] |
XU ZI-WEN.EVEN AND ODD GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1996, 45(11): 1807-1811.doi:10.7498/aps.45.1807 |
[19] |
CHEN JIAN-HUA, CHENG XIANG-AI.. Acta Physica Sinica, 1995, 44(10): 1529-1533.doi:10.7498/aps.44.1529 |
[20] |
HSU CHIH-CHUNG, HSIEH HSI-TEH.THE MATRIX ELEMENT OF SPACE GROUP OPERATORS. Acta Physica Sinica, 1965, 21(4): 802-816.doi:10.7498/aps.21.802 |