[1] |
Huang Wei-Li.Inverse problem of Mei symmetry for a general holonomic system. Acta Physica Sinica, 2015, 64(17): 170202.doi:10.7498/aps.64.170202 |
[2] |
Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system. Acta Physica Sinica, 2013, 62(11): 110201.doi:10.7498/aps.62.110201 |
[3] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[4] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[5] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[6] |
Liu Yang-Kui.A kind of conserved quantity of Mei symmetry for general holonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 7-10.doi:10.7498/aps.59.7 |
[7] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian.Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212.doi:10.7498/aps.59.5209 |
[8] |
Fang Jian-Hui.A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica, 2009, 58(6): 3617-3619.doi:10.7498/aps.58.3617 |
[9] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming.Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(10): 6732-6736.doi:10.7498/aps.58.6732 |
[10] |
Cai Jian-Le.Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27.doi:10.7498/aps.58.22 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[12] |
Ge Wei-Kuan.Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717.doi:10.7498/aps.57.6714 |
[13] |
Li Yuan-Cheng, Xia Li-Li, Zhao Wei, Hou Qi-Bao, Wang Jing, Jing Hong-Xing.Unified symmetry of mechanico-electrical systems. Acta Physica Sinica, 2007, 56(9): 5037-5040.doi:10.7498/aps.56.5037 |
[14] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[15] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan.On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499.doi:10.7498/aps.54.496 |
[16] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong.Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica, 2005, 54(2): 500-503.doi:10.7498/aps.54.500 |
[17] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[18] |
Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan.A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica, 2004, 53(11): 3644-3647.doi:10.7498/aps.53.3644 |
[19] |
Li Hong, Fang Jian-Hui.Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(9): 2807-2810.doi:10.7498/aps.53.2807 |
[20] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |