By choosing an appropriate damping kernel function of generalized Langevin equation, fractional Langevin equation (FLE) is derived in the case of overdamped condition. With the theory of anomalous diffusion and the memory of fractional derivatives, the physical meaning of FLE is discussed. Moreover, the internal mechanism of stochastic resonance about FLE is obtained. Finally, the numerical simulation shows that in a certain range of the order, stochastic resonance appears in FLE, and it is evident that the SNR gain in fractional Langevin equation is better than that of the integer-order situation.