[1] |
Wang Yong, Mei Feng-Xiang, Xiao Jing, Guo Yong-Xin.A kind of non-conservative Hamilton system solved by the Hamilton-Jacobi method. Acta Physica Sinica, 2017, 66(5): 054501.doi:10.7498/aps.66.054501 |
[2] |
Liu Shuang, Tian Song-Tao, Wang Zhen-Chen, Li Jian-Xiong.Chaos of a kind of nonlinear relative rotation system based on the effect of Coulomb friction. Acta Physica Sinica, 2015, 64(6): 064501.doi:10.7498/aps.64.064501 |
[3] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin.The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica, 2013, 62(15): 154501.doi:10.7498/aps.62.154501 |
[4] |
Hou Dong-Xiao, Zhao Hong-Xu, Liu Bin.Bifurcation and chaos in some relative rotation systems with Mathieu-Duffing oscillator. Acta Physica Sinica, 2013, 62(23): 234501.doi:10.7498/aps.62.234501 |
[5] |
Di Gen-Hu, Xu Yong, Xu Wei, Gu Ren-Cai.Chaos for a class of complex epidemiological models. Acta Physica Sinica, 2011, 60(2): 020504.doi:10.7498/aps.60.020504 |
[6] |
Ding Guang-Tao.A Method of constructing canonoid transformations. Acta Physica Sinica, 2011, 60(4): 044502.doi:10.7498/aps.60.044502 |
[7] |
Bi Qin-Sheng, Jiang Bo, Han Xiu-Jing.Implicit solitary wave solutions for a class of nonlinear dispersive Boussinesq equation. Acta Physica Sinica, 2010, 59(12): 8343-8347.doi:10.7498/aps.59.8343 |
[8] |
Luo Shi-Yu, Shao Ming-Zhu, Luo Xiao-Hua.The global bifurcation and chaotic behaviours for the crystalline undulator radiation. Acta Physica Sinica, 2010, 59(4): 2685-2690.doi:10.7498/aps.59.2685 |
[9] |
Ding Guang-Tao.New kind of inverse problems of Noether’s theory for Hamiltonian systems. Acta Physica Sinica, 2010, 59(3): 1423-1427.doi:10.7498/aps.59.1423 |
[10] |
Wang Wei, Zhang Qi-Chang, Wang Xue-Jiao.The application of the undetermined fundamental frequency for analyzing the critical value of chaos. Acta Physica Sinica, 2009, 58(8): 5162-5168.doi:10.7498/aps.58.5162 |
[11] |
Zhang Qi-Chang, Wang Wei, He Xue-Jun.Homoclinic bifurcation of the strongly nonlinear oscillation system by the normal form method. Acta Physica Sinica, 2008, 57(9): 5384-5389.doi:10.7498/aps.57.5384 |
[12] |
He Guang, Mei Feng-Xiang.Integral of differential equations of three-particle Toda lattice. Acta Physica Sinica, 2008, 57(1): 18-20.doi:10.7498/aps.57.18 |
[13] |
Lei You-Ming, Xu Wei.Chaos control in the Josephson junction with a resonant harmonic excitation. Acta Physica Sinica, 2008, 57(6): 3342-3352.doi:10.7498/aps.57.3342 |
[14] |
Shi Pei-Ming, Liu Bin, Hou Dong-Xiao.Chaotic motion of some relative rotation nonlinear dynamic system. Acta Physica Sinica, 2008, 57(3): 1321-1328.doi:10.7498/aps.57.1321 |
[15] |
Fang Jian-Hui, Ding Ning, Wang Peng.A new type of conserved quantity of Mei symmetry for Hamilton system. Acta Physica Sinica, 2007, 56(6): 3039-3042.doi:10.7498/aps.56.3039 |
[16] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan.On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499.doi:10.7498/aps.54.496 |
[17] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |
[18] |
Zhang Yi.Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331.doi:10.7498/aps.52.1326 |
[19] |
Min Fu-Hong, Xu Wen-Bo, Xu Zhen-Yuan.. Acta Physica Sinica, 2002, 51(8): 1690-1695.doi:10.7498/aps.51.1690 |
[20] |
CAI CHAO-HONG, XU ZHEN-YUAN, XU WEN-BO.DIRECT CHAOS TOWARDS LOW PERIOD MOTION BASED ON NOTCH FILTER FEEDBACK CONTROL. Acta Physica Sinica, 2001, 50(10): 1846-1850.doi:10.7498/aps.50.1846 |