[1] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[2] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun.Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(6): 064501.doi:10.7498/aps.61.064501 |
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[4] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei.Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica, 2010, 59(1): 11-14.doi:10.7498/aps.59.11 |
[5] |
Dong Wen-Shan, Huang Bao-Xin.Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6.doi:10.7498/aps.59.1 |
[6] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai.Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21.doi:10.7498/aps.58.16 |
[7] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li.The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica, 2009, 58(6): 3625-3631.doi:10.7498/aps.58.3625 |
[8] |
Huang Xiao-Hong, Zhang Xiao-Bo, Shi Shen-Yang.The Mei symmetry of discrete difference sequence mechanical system with variable mass. Acta Physica Sinica, 2008, 57(10): 6056-6062.doi:10.7498/aps.57.6056 |
[9] |
Zhang Kai, Wang Ce, Zhou Li-Bin.Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica, 2008, 57(11): 6718-6721.doi:10.7498/aps.57.6718 |
[10] |
Fang Jian-Hui, Ding Ning, Wang Peng.A new type of conserved quantity of Mei symmetry for Hamilton system. Acta Physica Sinica, 2007, 56(6): 3039-3042.doi:10.7498/aps.56.3039 |
[11] |
Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun.Lie symmetries of discrete Lagrange systems. Acta Physica Sinica, 2007, 56(6): 3060-3063.doi:10.7498/aps.56.3060 |
[12] |
Zhang Peng-Yu, Fang Jian-Hui.Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3813-3816.doi:10.7498/aps.55.3813 |
[13] |
Fang Jian-Hui, Ding Ning, Wang Peng.Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica, 2006, 55(8): 3817-3820.doi:10.7498/aps.55.3817 |
[14] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[15] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[16] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[17] |
Mei Feng-Xiang.Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica, 2003, 52(5): 1048-1050.doi:10.7498/aps.52.1048 |
[18] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |
[19] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui.. Acta Physica Sinica, 2002, 51(10): 2186-2190.doi:10.7498/aps.51.2186 |
[20] |
MEI FENG-XIANG.LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica, 2000, 49(7): 1207-1210.doi:10.7498/aps.49.1207 |