[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li.Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica, 2014, 63(17): 170202.doi:10.7498/aps.63.170202 |
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin.The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica, 2013, 62(15): 154501.doi:10.7498/aps.62.154501 |
[3] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[4] |
Jiang Wen-An, Luo Shao-Kai.Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica, 2011, 60(6): 060201.doi:10.7498/aps.60.060201 |
[5] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[6] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[7] |
Liu Yang-Kui.A kind of conserved quantity of Mei symmetry for general holonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 7-10.doi:10.7498/aps.59.7 |
[8] |
Chen Xiang-Wei, Zhao Yong-Hong, Liu Chang.Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Physica Sinica, 2009, 58(8): 5150-5154.doi:10.7498/aps.58.5150 |
[9] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li.The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica, 2009, 58(6): 3625-3631.doi:10.7498/aps.58.3625 |
[10] |
Ge Wei-Kuan.Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717.doi:10.7498/aps.57.6714 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[12] |
Liu Yang-Kui, Fang Jian-Hui.Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica, 2008, 57(11): 6699-6703.doi:10.7498/aps.57.6699 |
[13] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[14] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica, 2007, 56(10): 5575-5579.doi:10.7498/aps.56.5575 |
[15] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong.Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica, 2005, 54(2): 500-503.doi:10.7498/aps.54.500 |
[16] |
Zhang Yi, Ge Wei-Kuan.A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, 2005, 54(4): 1464-1467.doi:10.7498/aps.54.1464 |
[17] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[18] |
Fang Jian-Hui, Liao Yong-Pan, Zhang Jun.Non-Noether conserved quantity of a general form for mechanical systems with variable mass. Acta Physica Sinica, 2004, 53(12): 4037-4040.doi:10.7498/aps.53.4037 |
[19] |
Fang Jian-Hui, Zhang Peng-Yu.The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica, 2004, 53(12): 4041-4044.doi:10.7498/aps.53.4041 |
[20] |
Xu Zhi-Xin.. Acta Physica Sinica, 2002, 51(11): 2423-2425.doi:10.7498/aps.51.2423 |