[1] |
Xu Chao, Li Yuan-Cheng.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica, 2013, 62(12): 120201.doi:10.7498/aps.62.120201 |
[2] |
Chen Rong, Xu Xue-Jun.Conformal invariance, Noether symmetry and Lie symmetry for holonomic mechanical system with variable mass. Acta Physica Sinica, 2012, 61(2): 021102.doi:10.7498/aps.61.021102 |
[3] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang.Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica, 2012, 61(11): 111101.doi:10.7498/aps.61.111101 |
[4] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun.Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(6): 064501.doi:10.7498/aps.61.064501 |
[5] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(20): 200203.doi:10.7498/aps.61.200203 |
[6] |
Liu Xiao-Wei, Li Yuan-Cheng.Noether-Lie symmetry and conserved quantities of the Rosenberg problem. Acta Physica Sinica, 2011, 60(7): 070201.doi:10.7498/aps.60.070201 |
[7] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li.A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica, 2011, 60(8): 084501.doi:10.7498/aps.60.084501 |
[8] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[9] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li.Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938.doi:10.7498/aps.59.2935 |
[10] |
Jia Li-Qun, Cui Jin-Chao, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equations for nonholonomic systems of unilateral non-Chetaev’s type in the event space. Acta Physica Sinica, 2009, 58(4): 2141-2146.doi:10.7498/aps.58.2141 |
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[12] |
Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li.Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2007, 56(6): 3043-3049.doi:10.7498/aps.56.3043 |
[13] |
Zhang Yi.Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica, 2006, 55(2): 504-510.doi:10.7498/aps.55.504 |
[14] |
Fang Jian-Hui, Ding Ning, Wang Peng.Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica, 2006, 55(8): 3817-3820.doi:10.7498/aps.55.3817 |
[15] |
Luo Shao-Kai.Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system. Acta Physica Sinica, 2004, 53(1): 5-10.doi:10.7498/aps.53.5 |
[16] |
Zhang Yi, Mei Feng-Xiang.Effects of non-conservative forces and nonholonomic constraints on Noether symmetries of a Lagrange system. Acta Physica Sinica, 2004, 53(3): 661-668.doi:10.7498/aps.53.661 |
[17] |
Li Hong, Fang Jian-Hui.Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(9): 2807-2810.doi:10.7498/aps.53.2807 |
[18] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica, 2004, 53(12): 4021-4025.doi:10.7498/aps.53.4021 |
[19] |
Zhang Yi.Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331.doi:10.7498/aps.52.1326 |
[20] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing.. Acta Physica Sinica, 2002, 51(10): 2183-2185.doi:10.7498/aps.51.2183 |