[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica, 2015, 64(6): 064502.doi:10.7498/aps.64.064502 |
[2] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica, 2014, 63(9): 090201.doi:10.7498/aps.63.090201 |
[3] |
Liu Hong-Wei.Conformal symmetry and Mei conserved quantity for ageneralized Hamilton system. Acta Physica Sinica, 2014, 63(5): 050201.doi:10.7498/aps.63.050201 |
[4] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong.Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202.doi:10.7498/aps.61.200202 |
[5] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng.Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503.doi:10.7498/aps.61.060503 |
[6] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang.Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica, 2010, 59(12): 8322-8325.doi:10.7498/aps.59.8322 |
[7] |
Cai Jian-Le, Mei Feng-Xiang.Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica, 2008, 57(9): 5369-5373.doi:10.7498/aps.57.5369 |
[8] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin.Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713.doi:10.7498/aps.57.6709 |
[9] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin.Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica, 2008, 57(11): 6704-6708.doi:10.7498/aps.57.6704 |
[10] |
Hu Chu-Le, Xie Jia-Fang.Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica, 2007, 56(9): 5045-5048.doi:10.7498/aps.56.5045 |
[11] |
Xia Li-Li, Li Yuan-Cheng, Wang Jing, Hou Qi-Bao.Noether form invariance of nonholonomic controllable mechanical systems of non-Chetaev’s type. Acta Physica Sinica, 2006, 55(10): 4995-4998.doi:10.7498/aps.55.4995 |
[12] |
Ge Wei-Kuan, Zhang Yi.Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica, 2005, 54(11): 4985-4988.doi:10.7498/aps.54.4985 |
[13] |
Lou Zhi-Mei.Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica, 2005, 54(5): 1969-1971.doi:10.7498/aps.54.1969 |
[14] |
Li Ren-Jie, Qiao Yong-Fen, Meng Jun.. Acta Physica Sinica, 2002, 51(1): 1-5.doi:10.7498/aps.51.1 |
[15] |
ZENG SHAO-QUN, XU HAI-FENG, LI JIAO-YANG, LIU XIAO-DE.ON THE LINEAR SHIFT INVARIANCE OF THE THERMAL WAVE IMAGING. Acta Physica Sinica, 1997, 46(7): 1338-1343.doi:10.7498/aps.46.1338 |
[16] |
JIA CHUN-SHENG, JIANG XIAO-WEI, WANG XIAO-GUO, YANG QIU-BO.CALCULATION OF THE ENERGY EIGENVALUE OF A-QUANTUM SYSTEM IN THE FRAMEWORK OF-SUPERSYMMETRY AND SHAPE INVARIANCE. Acta Physica Sinica, 1997, 46(1): 12-19.doi:10.7498/aps.46.12 |
[17] |
WANG MEI-SHAN, TONG DIAN-MIN, GUAN XI-WEN, YANG SHAN-DE.HIDDEN LOCAL GAUGE INVAR IANCE FOR Osp(2,1) SPIN CHAIN. Acta Physica Sinica, 1997, 46(9): 1826-1833.doi:10.7498/aps.46.1826 |
[18] |
ZHANG HAI-YAN, XU BO-WEI.INVESTIGATION OF ONE-DIMENSIONAL NNN INTERACTION QUANTUN CHAIN BY CONFORMAL INVA-RIANCE AND THE LANCZOS METHOD. Acta Physica Sinica, 1994, 43(6): 864-871.doi:10.7498/aps.43.864 |
[19] |
XIONG ZHUANG, GUAN XI-WEN, ZHOU HUAN-QIANG. UNDER OPEN BOUNDARY CONDITIONS. Acta Physica Sinica, 1992, 41(12): 2034-2042.doi:10.7498/aps.41.2034 |
[20] |
LI SHI-CHEN, NI WEN-JUN, YU JIAN.AN ANALYSIS OF PARAMETER CONSTANCY OF LIGHT BEAM FOR MULTILENS RESONATORS. Acta Physica Sinica, 1989, 38(12): 2049-2053.doi:10.7498/aps.38.2049 |