[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li.Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica, 2014, 63(17): 170202.doi:10.7498/aps.63.170202 |
[2] |
Zhang Yi, Jin Shi-Xin.Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502.doi:10.7498/aps.62.234502 |
[3] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei.Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica, 2010, 59(1): 11-14.doi:10.7498/aps.59.11 |
[4] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[5] |
Zhao Zhe, Guo Yong-Xin, Liu Chang, Liu Shi-Xing.Differential equations of motion for constrained systems with respect to three kinds of nonholonomic variations. Acta Physica Sinica, 2008, 57(4): 1998-2005.doi:10.7498/aps.57.1998 |
[6] |
Liu Shi-Xing, Guo Yong-Xin, Liu Chang.A special nonholonomic mechanical system calculated by symplectic method. Acta Physica Sinica, 2008, 57(3): 1311-1315.doi:10.7498/aps.57.1311 |
[7] |
Luo Shao-Kai.A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lut zky type, for Lagrangian systems. Acta Physica Sinica, 2007, 56(10): 5580-5584.doi:10.7498/aps.56.5580 |
[8] |
Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang.Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica, 2006, 55(7): 3237-3240.doi:10.7498/aps.55.3237 |
[9] |
Wu Hui-Bin, Mei Feng-Xiang.Two comprehensions on Noether symmetry. Acta Physica Sinica, 2006, 55(8): 3825-3828.doi:10.7498/aps.55.3825 |
[10] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan.On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica, 2005, 54(2): 496-499.doi:10.7498/aps.54.496 |
[11] |
Wu Hui-Bin, Mei Feng-Xiang.Symmetries of Lagrange system subjected to gyroscopic forces. Acta Physica Sinica, 2005, 54(6): 2474-2477.doi:10.7498/aps.54.2474 |
[12] |
Li Ai-Min, Zhang Ying, Li Zi-Ping.Poincaré-Cartan integral invariant of a nonholonomic constrained generalized mechanical system. Acta Physica Sinica, 2004, 53(9): 2816-2820.doi:10.7498/aps.53.2816 |
[13] |
Zhang Yi, Mei Feng-Xiang.Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Physica Sinica, 2004, 53(8): 2419-2423.doi:10.7498/aps.53.2419 |
[14] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(5): 1270-1275.doi:10.7498/aps.53.1270 |
[15] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng.Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, 2003, 52(7): 1561-1564.doi:10.7498/aps.52.1561 |
[16] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |
[17] |
Zhang Yi.Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331.doi:10.7498/aps.52.1326 |
[18] |
Ge Wei-Kuan.. Acta Physica Sinica, 2002, 51(5): 939-942.doi:10.7498/aps.51.939 |
[19] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui.. Acta Physica Sinica, 2002, 51(10): 2186-2190.doi:10.7498/aps.51.2186 |
[20] |
QIAO YONG-FEN, LI REN-JIE, MENG JUN.LINDEL?F'S EQUATIONS OF NONHOLONOMIC ROTATIONAL RELATIVISTIC SYSTEMS. Acta Physica Sinica, 2001, 50(9): 1637-1642.doi:10.7498/aps.50.1637 |