[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li.Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica, 2014, 63(17): 170202.doi:10.7498/aps.63.170202 |
[2] |
Zhang Yi, Jin Shi-Xin.Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502.doi:10.7498/aps.62.234502 |
[3] |
Lou Zhi-Mei.The study of conserved quantities and symmetries for two-dimensional isotropic harmonic charged oscillator moving in homogeneous magnetic field. Acta Physica Sinica, 2013, 62(22): 220201.doi:10.7498/aps.62.220201 |
[4] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong.Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202.doi:10.7498/aps.61.200202 |
[5] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li.A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica, 2011, 60(8): 084501.doi:10.7498/aps.60.084501 |
[6] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[7] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[8] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei.Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica, 2010, 59(1): 11-14.doi:10.7498/aps.59.11 |
[9] |
Gu Shu-Long, Zhang Hong-Bin.Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica, 2010, 59(2): 716-718.doi:10.7498/aps.59.716 |
[10] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[11] |
Lou Zhi-Mei.The study of symmetries and conserved quantities for one-dimensional damped-amplified harmonic oscillators. Acta Physica Sinica, 2008, 57(3): 1307-1310.doi:10.7498/aps.57.1307 |
[12] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[13] |
Lou Zhi_Mei.The study of symmetries and conserved quantities for one class of linearly coupled multidimensional freedom systems. Acta Physica Sinica, 2007, 56(5): 2475-2478.doi:10.7498/aps.56.2475 |
[14] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica, 2006, 55(11): 5594-5597.doi:10.7498/aps.55.5594 |
[15] |
Zhang Yi, Ge Wei-Kuan.A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica, 2005, 54(4): 1464-1467.doi:10.7498/aps.54.1464 |
[16] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[17] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[18] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[19] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng.Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica, 2003, 52(7): 1561-1564.doi:10.7498/aps.52.1561 |
[20] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |