[1] |
Zhao Wu, Zhang Hong-Bin, Sun Chao-Fan, Huang Dan, Fan Jun-Kai.Subharmonic resonance bifurcation and chaos of simple pendulum system with vertical excitation and horizontal constraint. Acta Physica Sinica, 2021, 70(24): 240202.doi:10.7498/aps.70.20210953 |
[2] |
Shang Hui-Lin, Han Yuan-Bo, Li Wei-Yang.Suppression of chaos and basin erosion in a nonlinear relative rotation system by delayed position feedback. Acta Physica Sinica, 2014, 63(11): 110502.doi:10.7498/aps.63.110502 |
[3] |
Liu Bin, Zhao Hong-Xu, Hou Dong-Xiao.Bifurcation and chaos of some relative rotation system with triple-well Mathieu-Duffing oscillator. Acta Physica Sinica, 2014, 63(17): 174502.doi:10.7498/aps.63.174502 |
[4] |
Liu Bin, Zhao Hong-Xu, Hou Dong-Xiao, Liu Hao-Ran.Bifurcation and chaos of some strongly nonlinear relative rotation system with time-varying clearance. Acta Physica Sinica, 2014, 63(7): 074501.doi:10.7498/aps.63.074501 |
[5] |
Liu Hong-Chen, Wang Yun, Su Zhen-Xia.Bifurcation phenomena in single-phase three-level inverters. Acta Physica Sinica, 2013, 62(24): 240506.doi:10.7498/aps.62.240506 |
[6] |
Zhang Wen-Ming, Li Xue, Liu Shuang, Li Ya-Qian, Wang Bo-Hua.Chaos and the control of multi-time delay feedback for some nonlinear relative rotation system. Acta Physica Sinica, 2013, 62(9): 094502.doi:10.7498/aps.62.094502 |
[7] |
Hou Dong-Xiao, Zhao Hong-Xu, Liu Bin.Bifurcation and chaos in some relative rotation systems with Mathieu-Duffing oscillator. Acta Physica Sinica, 2013, 62(23): 234501.doi:10.7498/aps.62.234501 |
[8] |
Meng Zong, Fu Li-Yuan, Song Ming-Hou.Bifurcation of a kind of nonlinear-relative rotational system with combined harmonic excitation. Acta Physica Sinica, 2013, 62(5): 054501.doi:10.7498/aps.62.054501 |
[9] |
Hu Wen, Zhao Guang-Hao, Zhang Gong, Zhang Jing-Qiao, Liu Xian-Long.Stabilities and bifurcations of sine dynamic equations on time scale. Acta Physica Sinica, 2012, 61(17): 170505.doi:10.7498/aps.61.170505 |
[10] |
Zhang Xiao-Fang, Chen Zhang-Yao, Bi Qin-Sheng.Evolution from regular movement patterns to chaotic attractors in a nonlinear electrical circuit. Acta Physica Sinica, 2010, 59(5): 3057-3065.doi:10.7498/aps.59.3057 |
[11] |
Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan.Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43.doi:10.7498/aps.59.38 |
[12] |
Liu Hao-Ran, Liu Bin, Liu Shuang, Wen Yan.Hopf bifurcation control in a coupled nonlinear relative rotation dynamical system. Acta Physica Sinica, 2010, 59(8): 5223-5228.doi:10.7498/aps.59.5223 |
[13] |
Liu Shuang, Liu Bin, Shi Pei-Ming.Nonlinear feedback control of Hopf bifurcation in a relative rotation dynamical system. Acta Physica Sinica, 2009, 58(7): 4383-4389.doi:10.7498/aps.58.4383 |
[14] |
Hou Dong-Xiao, Liu Bin, Shi Pei-Ming.The bifurcation of a kind of relative rotational dynamic equation with hysteresis and its approximate solution. Acta Physica Sinica, 2009, 58(9): 5942-5949.doi:10.7498/aps.58.5942 |
[15] |
Meng Zong, Liu Bin.Stability of equilibrium state of a kind of nonlinear relative rotation dynamic system and associated harmonic approximate solution. Acta Physica Sinica, 2008, 57(3): 1329-1334.doi:10.7498/aps.57.1329 |
[16] |
Shi Pei-Ming, Liu Bin, Hou Dong-Xiao.Chaotic motion of some relative rotation nonlinear dynamic system. Acta Physica Sinica, 2008, 57(3): 1321-1328.doi:10.7498/aps.57.1321 |
[17] |
Yu Wan-Bo, Wei Xiao-Peng.The bifurcation diagram of a wavelet function. Acta Physica Sinica, 2006, 55(8): 3969-3973.doi:10.7498/aps.55.3969 |
[18] |
Zhang Wei, Zhou Shu-Hua, Ren Yong, Shan Xiu-Ming.Bifurcation analysis and control in Turbo decoding algorithm. Acta Physica Sinica, 2006, 55(2): 622-627.doi:10.7498/aps.55.622 |
[19] |
Ma Xi-Kui, Yang Mei, Zou Jian-Long, Wang Ling-Tao.Study of complex behavior in a time-delayed van der Pol’s electromagnetic system (Ⅰ)——The phenomena of bifurcations and chaos. Acta Physica Sinica, 2006, 55(11): 5648-5656.doi:10.7498/aps.55.5648 |
[20] |
Li Ming, Ma Xi-Kui, Dai Dong, Zhang Hao.Analysis of bifurcation and chaos in a class of piecewise smooth systems based on symbolic sequence. Acta Physica Sinica, 2005, 54(3): 1084-1091.doi:10.7498/aps.54.1084 |