[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501.doi:10.7498/aps.64.134501 |
[2] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin.A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica, 2014, 63(9): 090201.doi:10.7498/aps.63.090201 |
[3] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica, 2014, 63(16): 164501.doi:10.7498/aps.63.164501 |
[4] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[5] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201.doi:10.7498/aps.62.160201 |
[6] |
Chen Rong, Xu Xue-Jun.Conformal invariance, Noether symmetry and Lie symmetry for systems with unilateral Chetaev non-holonomic constraints. Acta Physica Sinica, 2012, 61(14): 141101.doi:10.7498/aps.61.141101 |
[7] |
Chen Rong, Xu Xue-Jun.Conformal invariance, Noether symmetry and Lie symmetry for holonomic mechanical system with variable mass. Acta Physica Sinica, 2012, 61(2): 021102.doi:10.7498/aps.61.021102 |
[8] |
Cai Jian-Le, Shi Sheng-Shui.Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201.doi:10.7498/aps.61.030201 |
[9] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li.Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201.doi:10.7498/aps.60.040201 |
[10] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li.Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica, 2010, 59(5): 2939-2941.doi:10.7498/aps.59.2939 |
[11] |
Gu Shu-Long, Zhang Hong-Bin.Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica, 2010, 59(2): 716-718.doi:10.7498/aps.59.716 |
[12] |
Cai Jian-Le.Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27.doi:10.7498/aps.58.22 |
[13] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[14] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[15] |
Ge Wei-Kuan.Mei symmetries of a type of dynamical equations. Acta Physica Sinica, 2007, 56(1): 1-4.doi:10.7498/aps.56.1 |
[16] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica, 2006, 55(11): 5594-5597.doi:10.7498/aps.55.5594 |
[17] |
Zhang Yi.Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica, 2005, 54(7): 2980-2984.doi:10.7498/aps.54.2980 |
[18] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[19] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[20] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |