[1] |
Wu Hui-Bin, Mei Feng-Xiang.A gradient representation of holonomic system in the event space. Acta Physica Sinica, 2015, 64(23): 234501.doi:10.7498/aps.64.234501 |
[2] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501.doi:10.7498/aps.64.134501 |
[3] |
Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei.Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica, 2014, 63(11): 110202.doi:10.7498/aps.63.110202 |
[4] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun.A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204.doi:10.7498/aps.61.200204 |
[5] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang.Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica, 2012, 61(11): 111101.doi:10.7498/aps.61.111101 |
[6] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei.Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(6): 3639-3642.doi:10.7498/aps.59.3639 |
[7] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li.Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938.doi:10.7498/aps.59.2935 |
[8] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu.Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica, 2008, 57(4): 2006-2010.doi:10.7498/aps.57.2006 |
[9] |
Ge Wei-Kuan.Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717.doi:10.7498/aps.57.6714 |
[10] |
Hu Chu-Le.Lie symmetries and Hojman conserved quantities of one kind of differential equations of motion of nonholonomic systems. Acta Physica Sinica, 2007, 56(7): 3675-3677.doi:10.7498/aps.56.3675 |
[11] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[12] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie.Existence theorem and its converse of conserved quantities for the nonholonomic nonconservative systems in the event space. Acta Physica Sinica, 2006, 55(11): 5585-5589.doi:10.7498/aps.55.5585 |
[13] |
Qiao Yong-Fen, Zhao Shu-Hong.Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica, 2006, 55(2): 499-503.doi:10.7498/aps.55.499 |
[14] |
Zheng Shi-Wang, Qiao Yong-Fen.Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245.doi:10.7498/aps.55.3241 |
[15] |
Ge Wei-Kuan, Zhang Yi.Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica, 2005, 54(11): 4985-4988.doi:10.7498/aps.54.4985 |
[16] |
Xu Xue-Jun, Mei Feng-Xiang.Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica, 2005, 54(12): 5521-5524.doi:10.7498/aps.54.5521 |
[17] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica, 2005, 54(3): 1009-1014.doi:10.7498/aps.54.1009 |
[18] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na.Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica, 2005, 54(2): 490-495.doi:10.7498/aps.54.490 |
[19] |
Qiao Yong-Fen, Zhang Yao-Liang, Han Guang-Cai.Form invariance of Hamilton's canonical equations of a nonholonomic mechanical s ystem. Acta Physica Sinica, 2003, 52(5): 1051-1056.doi:10.7498/aps.52.1051 |
[20] |
Zhang Yi, Ge Wei-Kuan.Integrating factors and conservation laws for non-holonomic dynamical systems. Acta Physica Sinica, 2003, 52(10): 2363-2367.doi:10.7498/aps.52.2363 |