[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun.Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501.doi:10.7498/aps.64.134501 |
[2] |
Xu Chao, Li Yuan-Cheng.Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica, 2013, 62(12): 120201.doi:10.7498/aps.62.120201 |
[3] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun.Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica, 2012, 61(2): 021101.doi:10.7498/aps.61.021101 |
[4] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang.Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica, 2012, 61(11): 111101.doi:10.7498/aps.61.111101 |
[5] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian.Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212.doi:10.7498/aps.59.5209 |
[6] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei.Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(6): 3639-3642.doi:10.7498/aps.59.3639 |
[7] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li.Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938.doi:10.7498/aps.59.2935 |
[8] |
Zhang Yi.Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica, 2009, 58(11): 7436-7439.doi:10.7498/aps.58.7436 |
[9] |
Cai Jian-Le.Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27.doi:10.7498/aps.58.22 |
[10] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming.Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(10): 6732-6736.doi:10.7498/aps.58.6732 |
[11] |
Ge Wei-Kuan.Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717.doi:10.7498/aps.57.6714 |
[12] |
Zheng Shi-Wang, Jia Li-Qun.Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665.doi:10.7498/aps.56.661 |
[13] |
Li Yuan-Cheng, Xia Li-Li, Zhao Wei, Hou Qi-Bao, Wang Jing, Jing Hong-Xing.Unified symmetry of mechanico-electrical systems. Acta Physica Sinica, 2007, 56(9): 5037-5040.doi:10.7498/aps.56.5037 |
[14] |
Ding Ning, Fang Jian-Hui, Zhang Peng-Yu, Wang Peng.Unified symmetry of Poincaré-Chetaev equations. Acta Physica Sinica, 2006, 55(12): 6197-6202.doi:10.7498/aps.55.6197 |
[15] |
Zheng Shi-Wang, Qiao Yong-Fen.Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245.doi:10.7498/aps.55.3241 |
[16] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang.Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica, 2005, 54(3): 1009-1014.doi:10.7498/aps.54.1009 |
[17] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie.Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica, 2004, 53(7): 2035-2039.doi:10.7498/aps.53.2035 |
[18] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui.. Acta Physica Sinica, 2002, 51(10): 2186-2190.doi:10.7498/aps.51.2186 |
[19] |
Qiao Yong-Fen, Zhao Shu-Hong.. Acta Physica Sinica, 2001, 50(1): 1-7.doi:10.7498/aps.50.1 |
[20] |
MEI FENG-XIANG.LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica, 2000, 49(7): 1207-1210.doi:10.7498/aps.49.1207 |