[1] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun.Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2014, 63(14): 140201.doi:10.7498/aps.63.140201 |
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin.The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica, 2013, 62(15): 154501.doi:10.7498/aps.62.154501 |
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[4] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian.Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212.doi:10.7498/aps.59.5209 |
[5] |
Dong Wen-Shan, Huang Bao-Xin.Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6.doi:10.7498/aps.59.1 |
[6] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai.Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21.doi:10.7498/aps.58.16 |
[7] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li.The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica, 2009, 58(6): 3625-3631.doi:10.7498/aps.58.3625 |
[8] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun.Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica, 2009, 58(1): 28-33.doi:10.7498/aps.58.28 |
[9] |
Xia Li-Li, Li Yuan-Cheng.Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica, 2008, 57(8): 4652-4656.doi:10.7498/aps.57.4652 |
[10] |
Zheng Shi-Wang, Qiao Yong-Fen.Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica, 2006, 55(7): 3241-3245.doi:10.7498/aps.55.3241 |
[11] |
Zhang Peng-Yu, Fang Jian-Hui.Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3813-3816.doi:10.7498/aps.55.3813 |
[12] |
Gu Shu-Long, Zhang Hong-Bin.Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica, 2005, 54(9): 3983-3986.doi:10.7498/aps.54.3983 |
[13] |
Xu Xue-Jun, Mei Feng-Xiang.Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica, 2005, 54(12): 5521-5524.doi:10.7498/aps.54.5521 |
[14] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang.Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(5): 1270-1275.doi:10.7498/aps.53.1270 |
[15] |
Luo Shao-Kai, Mei Feng-Xiang.A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica, 2004, 53(3): 6-10.doi:10.7498/aps.53.6 |
[16] |
Mei Feng-Xiang.Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica, 2003, 52(5): 1048-1050.doi:10.7498/aps.52.1048 |
[17] |
Luo Shao-Kai.Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica, 2003, 52(12): 2941-2944.doi:10.7498/aps.52.2941 |
[18] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui.. Acta Physica Sinica, 2002, 51(10): 2186-2190.doi:10.7498/aps.51.2186 |
[19] |
Qiao Yong-Fen, Zhao Shu-Hong.. Acta Physica Sinica, 2001, 50(1): 1-7.doi:10.7498/aps.50.1 |
[20] |
MEI FENG-XIANG.LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica, 2000, 49(7): 1207-1210.doi:10.7498/aps.49.1207 |