[1] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin.The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica, 2013, 62(15): 154501.doi:10.7498/aps.62.154501 |
[2] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun.Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica, 2012, 61(20): 200203.doi:10.7498/aps.61.200203 |
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang.Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201.doi:10.7498/aps.60.030201 |
[4] |
Liu Yang-Kui.A kind of conserved quantity of Mei symmetry for general holonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 7-10.doi:10.7498/aps.59.7 |
[5] |
Dong Wen-Shan, Huang Bao-Xin.Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6.doi:10.7498/aps.59.1 |
[6] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li.The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica, 2009, 58(6): 3625-3631.doi:10.7498/aps.58.3625 |
[7] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai.Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21.doi:10.7498/aps.58.16 |
[8] |
Zhang Kai, Wang Ce, Zhou Li-Bin.Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica, 2008, 57(11): 6718-6721.doi:10.7498/aps.57.6718 |
[9] |
Huang Xiao-Hong, Zhang Xiao-Bo, Shi Shen-Yang.The Mei symmetry of discrete difference sequence mechanical system with variable mass. Acta Physica Sinica, 2008, 57(10): 6056-6062.doi:10.7498/aps.57.6056 |
[10] |
Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun.Lie symmetries of discrete Lagrange systems. Acta Physica Sinica, 2007, 56(6): 3060-3063.doi:10.7498/aps.56.3060 |
[11] |
Xia Li-Li, Li Yuan-Cheng.Perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical system in phase place. Acta Physica Sinica, 2007, 56(11): 6183-6187.doi:10.7498/aps.56.6183 |
[12] |
Fang Jian-Hui, Wang Peng, Ding Ning.Lie-Mei symmetry of mechanical system in phase space. Acta Physica Sinica, 2006, 55(8): 3821-3824.doi:10.7498/aps.55.3821 |
[13] |
Fang Jian-Hui, Ding Ning, Wang Peng.Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica, 2006, 55(8): 3817-3820.doi:10.7498/aps.55.3817 |
[14] |
Zhang Li-Xin, Qian Wei-Hong, Gao Xin-Quan, Chou Ji-Fan.A harmonized multi-time difference scheme and its stability. Acta Physica Sinica, 2005, 54(7): 3465-3472.doi:10.7498/aps.54.3465 |
[15] |
Zhang Yi.Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica, 2005, 54(10): 4488-4495.doi:10.7498/aps.54.4488 |
[16] |
Zhang Yi.Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica, 2004, 53(2): 331-336.doi:10.7498/aps.53.331 |
[17] |
He Wen-Ping, Feng Guo-Lin, Dong Wen-Jie, Li Jian-Ping.Comparison with solution of convection-diffusion by several difference schemes. Acta Physica Sinica, 2004, 53(10): 3258-3264.doi:10.7498/aps.53.3258 |
[18] |
Zhang Yi.Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331.doi:10.7498/aps.52.1326 |
[19] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong.Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica, 2003, 52(12): 2945-2948.doi:10.7498/aps.52.2945 |
[20] |
MEI FENG-XIANG.LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica, 2000, 49(7): 1207-1210.doi:10.7498/aps.49.1207 |